On Iterated Minimization in Nonconvex Optimization
نویسندگان
چکیده
منابع مشابه
On Iterated Minimization in Nonconvex Optimization
In dynamic programming and decomposition methods one often applies an iterated minimization procedure. The problem variables are partitioned into several blocks, say x and y. Treating y as a parameter, the first phase consists of minimization with respect to the variable x. In a second phase the minimization of the resulting optimal value function depending on y is considered. In this paper we ...
متن کاملComposite Optimization by Nonconvex Majorization-Minimization
Many tasks in imaging can be modeled via the minimization of a nonconvex composite function. A popular class of algorithms for solving such problems are majorizationminimization techniques which iteratively approximate the composite nonconvex function by a majorizing function that is easy to minimize. Most techniques, e.g. gradient descent, utilize convex majorizers in order guarantee that the ...
متن کاملParallel Majorization Minimization with Dynamically Restricted Domains for Nonconvex Optimization
We propose an optimization framework for nonconvex problems based on majorizationminimization that is particularity well-suited for parallel computing. It reduces the optimization of a high dimensional nonconvex objective function to successive optimizations of locally tight and convex upper bounds which are additively separable into low dimensional objectives. The original problem is then brok...
متن کاملNonconvex Minimization Problems
I. The central result. The grandfather of it all is the celebrated 1961 theorem of Bishop and Phelps (see [7], [8]) that the set of continuous linear functionals on a Banach space E which attain their maximum on a prescribed closed convex bounded subset X c E is norm-dense in £*. The crux of the proof lies in introducing a certain convex cone in E, associating with it a partial ordering, and ap...
متن کاملOn the Global Convergence of Majorization Minimization Algorithms for Nonconvex Optimization Problems
In this paper, we study the global convergence of majorization minimization (MM) algorithms for solving nonconvex regularized optimization problems. MM algorithms have received great attention in machine learning. However, when applied to nonconvex optimization problems, the convergence of MM algorithms is a challenging issue. We introduce theory of the KurdykaLojasiewicz inequality to address ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 1986
ISSN: 0364-765X,1526-5471
DOI: 10.1287/moor.11.4.679